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4.1. Definition. First isomorphism

Let the process of splitting (hence duplicating) a cut-vertex
into to two vertices to produce two disjoint subgraphs be known as
�Operation-1.

If two graphs G1 and G2 become isomorphic to each by re-
peatedly applying the �Operation-1 on the graphs then they are called
1-isomorphic to each other.
The disconnected graph in the figure 1 is 1-isomorphic to the graph
in the figure ?? as it can be obtained by applying operation-1 at the
cut-vertices a and b.

Figure 1. Applying Operation-1 on the graph in figure ??

4.2. THEOREM. If G1 and G2 are two 1-isomorphic graphs then
prove that rank of G1 = rank of G2 and the nullity of G1 = nullity
of G2.

Proof : Let G1 and G2 be two 1-isomorphic graphs.
Suppose in G1 there are n vertices and e edges. We know that as
result of performing the operation of spliting a cut-vertex into two
duplicate vertices one more vertex is added to the graph along with
one more component of the graph.

If by performing such operations m times on G1 we can obtain
G2 then there will be m more vertices and m more components in G2
than G1.
Therefore, number of vertice in G2 is n + m and number of compo-
nents in G2 is k +m

Hence,

Rank of G2 = Number of vertices in G2 − Number of components in G2

= (n+m)− (k +m)

= n− k
∴ Rank of G2 = Rank of G1

Also, above operations neither add nor remove any edge of G1. So
the number of edges in 1-isomorphic graphs G1 and G2 are same.
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Therefore,

Nullity of G2 = Number of edges inG2 − Rank of G2

= Number of edges in G1 − Rank of G1

= Nullity of G1

∴ Nullity of G2 = Nullity of G1

4.3. Example. Second isomorphism

First we define following operations

Operation-1 :
In a seperable graph split (hence duplicate) a cut-vertex into two
vertices to produce two disjoint subgraphs.

Operation-2 :
In a 2-connected graph G (Figure: 2(a)) let x and y be a pair of
vertices whose removal from the graph will leave the resultant graph
disconnected.
Split x and y both into two pairs of vertices x1, x2 and y1, y2
respectively and let the resultant subgraphs be g and g, such that x1
and y1 remain with g and x2 and y2 remain with g (Figure: 2(b)).
By merging x1 with y2 and x2 with y1 rejoin the two subgraphs g and
g (Figure: 2(d))

Two graphs G1 and G2 are said to be 2-isomorphic with each
other if they become isomorphic after going under the operation-1 or
operation-2 or both the operations any number of times.

The graphs in Figure: 2(a) and Figure: 2(d) are 2-isomorphic.

Figure 2. 2-isomorphic graphs [ (a) and (d) ]

4.4. Definition. Circuit correspondence

Circuit correspondence :
Two graphs G1 and G2 are said to have Circuit correspondance if
they meet the following conditions

(i) There is one-to-one correspondance between the edges of G1
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and G2 and
(ii) one-to-one correspondance between the circuits of G1 and G2 such
that a circuit in G1 formed by certain edges of G1 has a corresponding
circuit in G2 formed by corresponding edges in G2, and vice versa.

4.5. THEOREM. Prove that 2-isomorphic graphs have circuit
correspondence.

Proof : Let G1 and G2 be 2-isomorphic with each
other.
Therefore, they become isomorphic after going under the operation-1
(Spliting a cut-vertex) or operation-2 (Spliting two vertices that
disconnect a 2-connected graph and cross-merging them) or both the
operations any number of times, if required.

Now, Operation-1 splits a vertex into two leaving the edges in-
tact. Therefore the circuits are retained in their original form after a
graph undergoes operation-1.

Also if x and y are two vertices in a 2-connected graph whose
removal from the graph disconnects the graph into two subgraphs g
and g,
then after performing Operation-2 at these points there are following
three possilibities for any circuit τ in the graph.

1. τ consists of edges in g
2. τ consists of edges in g
3. τ consists of edges in g and g both.

In first two cases the circiuit ramains unchanged.

In the last case τ has all the original edges except the edge
connecting x and y has flipped after operation-2. But the flipping of
the edge does not change the edge correspondance. Therefore after
undergoing operation-2 also a graph retains a circuit in its original
form.

Thus, there is a one-to-one correspondance between the circuits of
G1 and G2.

4.6. Definition. Planar graph

A graph is said to be Planar if there exists a geometric repre-
sentation of G which can be drawn on a plane such that no two of its
edges intersect.
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Figure 3. Geometric representation of a planar grpah

4.7. Definition. Embedding

The drawing of a geometric representation of graph G on any
surface that no edges intersect is called Embedding of the graph G
on the surface.

4.8. Definition. Nonplanar graph

A graph is said to be Nonplanar if it cannot be drawn on a
plane without a crossover between atleast one pair of of its edges.

4.9. Example. Using geometric arguments prove that a complete
graph of 5 vertices is non planar.

Proof : Kuratowski’s first graph:
A complete graph with 5 vertices is called Kuratowski’s first graph.
The graph is generally denoted by K5.

Figure 4. Constructing Kuratowki’s first graph (K5)

Now we shall show that the graph is nonplanar using impossibility
of its embedding on a plane surface.

Let v1, v2, v3, v4 and v5 be the vertices of the graph. As it is a
complete graph with 5 vertices each vertex must be connected
directly through an edge with each of the remaining 4 vertices. We
shall try to make such connections avoiding any crossover of the edges.

Clearly there must be a circuit through all the edges. We draw this
circuit as a pentagon with the vertices of the graph (Figure: 4(a)).
The pentagon divides the plane of the drawing paper into two
regions, one inside and the other outside. Each vertex is connected
with two neighbouring vertices and needs to be connected with rest
of the vertices.
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Let us draw an edge inside the pentagon to connect the ver-
tices v1 and v3 (Figure: 4(b)). This edge divides the pentagon interior
into two parts such that v4 and v5 lie on the opposite side of the part
containg v2.

Now we draw two edges lying in the exterior of the pentagon
which connect v2 with v4 and v5 and then we draw an edge in the
interior to connect v3 with v5 (Figure: 4(c) and (Figure: 4(d))). So
far there no edge that crosses over any other edge.

Finally we need to connect v1 with v4 directly with an edge.
As they lie in two different closed regions formed by some of the
edges that we have drawn. , it is impossible to draw an edge
to conncet the two vertices without crossing over atleast one of
the existing edges (Figure: 4(e)). Similarly any other attempt of
embedding the graph in a plane fails.

Thus, the graph is nonplanar as it cannot be embedded in a
plane.

4.10. Example. Using geometric arguments prove that K3,3is
non-planar.

Proof : Kuratowski’s second graph:
A regular connected graph with 6 vertices and 9 edges is called
Kuratowski’s second graph. The graph is generally denoted by K3,3.

Figure 5. Constructing Kuratowki’s second graph (K3,3)

Now we shall show that the graph is nonplanar using impossibility
of its embedding on a plane surface.

Let v1, v2, v3, v4, v5 and v6 be the vertices of the graph. The
degree of each vertex is 3. Therefore, to embed the graph in a plane
each vertex is to be connected directly, through an edge, with three
of the remaining vertices. We shall try to make such connections
avoiding any crossover of the edges.

Clearly there must be a circuit through all the edges. We draw this
circuit as a hexagon with the vertices of the graph (Figure: 5(a)).
The hexagon divides the plane of the drawing paper into two regions,
one inside and the other outside. Each vertex is connected with two
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neighbouring vertices and needs to be connected with one of the
other vertices.

Let us draw an edge inside the pentagon to connect the ver-
tices v1 and v4 (Figure: 5(b)). This edge divides the pentagon interior
into two parts such that v2 and v3 lie on the opposite side of the part
containg v5 and v6.

Now we draw an edge lying in the exterior of the pentagon
which connect v2 with v5 (Figure: 5(c)). So far there no edge that
crosses over any other edge.

Finally we need to connect v3 with v6 directly with an edge.
As v6 lies outside the closed region containing v3 , it is impossible
to draw an edge to conncet the two vertices without crossing over
atleast one of the existing edges (Figure: 5(d)). Similarly any other
attempt of embedding the graph in a plane fails.

Thus, the graph is nonplanar as it cannot be embedded in a
plane.

4.11. Example. Discuss Kurtowski’s two graphs

Solution :

(a) Kuratowki’s first graph (K5) (b) Kuratowki’s second graph (K3,3)

Kuratowski’s first graph:
A complete graph with 5 vertices is called Kuratowski’s first graph.
The graph is generally denoted by K5.

Kuratowski’s second graph:
A regular connected graph with 6 vertices and 9 edges is called
Kuratowski’s second graph. The graph is generally denoted by K3,3.

The two graphs have the following properties in common.
1. Both the graphs are regular
2. Both the graphs are nonplanar
3. Removal of one edge or one vertex makes each graph planar.
4. Both the graphs are simplest nonplanar graphs as K5 is a
nonplanar

graph with smallest number of vertices and K3,3 is a nonplanar
graph

with smallest number of edges.
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[A] Discuss Kurtowski’s First graphs

Solution.

Figure 7. Kuratowki’s first graph (K5)

Kuratowski’s first graph:
A complete graph with 5 vertices is called Kuratowski’s first
graph. The graph is generally denoted by K5.

A regular connected graph with 6 vertices and 9 edges
is called Kuratowski’s second graph. The graph is generally
denoted by K3,3. The graph has following properties.

1. It is a regular nonplanar graph
2. Removal of one edge or one vertex makes the graph
planar.
3. It is one of the simplest nonplanar graphs as it is a
nonplanar graph with smallest number of vertices.

[B] Kurtowski’s Second graphs

Solution.

Figure 8. Kuratowki’s second graph (K3,3)

Kuratowski’s Second graph (K3,3):
A regular connected graph with 6 vertices and 9 edges is
called Kuratowski’s second graph. The graph is generally
denoted by K3,3. The graph has following properties.

1. It is a regular nonplanar graph
2. Removal of one edge or one vertex makes the graph
planar.
3. It is one of the simplest nonplanar graphs as it is a
nonplanar graph with smallest number of edges.
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4.12. Definition. Region (face) and Infinite region

A geometric representation of a planar graph divides the plane
into some closed areas bounded by edges and some unbounded open
areas. Each closed area is called a Region or a Face of the graph
and each unbounded area is called an Infinite Region of the graph.

Figure 9. Regions (Faces) of a graph

In the graph shown in the figure 9 has four regions R1, R2, R3, R4
and an infinite region R5.

4.13. THEOREM. State and prove Euler’s theorem for planar
graphs.

Proof : We know that adding a self-loop or a parallel
edge adds one region to the graph and at the same time the value of
e is increased by one. Also removal of an edge that does not form
a boundary of any region either increases or decreases e and n both
by 1 simultenously. Therfore such removal leaves e − n unchanged.
Thus, it is sufficient to prove the result for a simple planar graph.

Now, a planar graph can be drawn such that each region is a
polygon. Therefore we can a draw a simple planar graph as a
polygonal net.

Suppose the polygonal net representing a simple planar graph
G consists of f regions (faces) and let kp be the number of p-sided
regions in the graph. Since each edge is on a boundary of exactly
two regions, we have,

3k3 + 4k4 + 5k5 + · · ·+ rkr = 2e
where kr is the number of polygons with maximum number of edges.
Also,

k3 + k4 + k5 + · · ·+ kr = f
Now, the sum of all angles subtended at each vertex in the polygonal
net is 2πn

Moreover, the sum of all interior angles of a p-sided polygon is
π(p− 2) and the sum of the exterior angles is π(p+ 2). Therefore we
can also calculate the sum of all the angles subtended at each vertex
in the polygonal net as the grand sum of all the interior angles of
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f − 1 regions plus the sum of all the exterior angles of the infinite
region.
Therefore,

2nπ = π(3− 2)k3 + π(4− 2)k4 + · · ·+ π(r − 2)kr + 4π

= π(3k3 + 4k4 + 5k5 + · · ·+ rkr)− 2(k3 + k4 + k5 + · · ·+ kr) + 4π

= π(2e− 2f) + 4π

= 2π(e− f + 2)

∴ n = e− f + 2

Therefore, the number of regions in G is given by f = e− n+ 2.

4.14. THEOREM. For a simple connected planar graph with
n-vertices , e-edges (e > 2) and f -regions prove the following.

(i) e >
3

2
f (ii) e 6 3n− 6 (iii) e 6 2n− 4 where e > 4

Proof : Let G be a simple planar graph with n ver-
tices and e edges, where e > 2.
(a) Since an edge of a graph is common to exactly 2 regions and a
region has atleast 3 edges we have,

2e > 3f - - - (1)

∴ e >
3

2
f

(b) Also using the Euler’s formula for a planar graph we have,

f = e− n+ 2

Substituting in 2e > 3f we get,

2e > 3(e− n+ 2)

2e > 3e− 3n+ 6

3n− 6 > e
(c) Now, if we assume that each region in a graph is bounded by

atleast 4 regions then we get

2e > 4f
Again using Euler’s formula for a planar graph we have,

f = e− n+ 2

Substituting in 2e > 4f we get,

2e > 4(e− n+ 2)

e > 2(e− n+ 2)

e > 2e− 2n+ 4

2n− 4 > e
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4.15. Example. Using Euler’s theorem prove that Kuratowski’s
first and second graphs are non-planar.

Proof : In a graph every region is bounded by atleast
three edges and each edge belongs to exactly two regions. Therefore,
if there are e edges, n vertices and f faces then

2e > 3f

Using Euler’s formula for a planar graph, f = e− n+ 2 we get,

2e > 3(e− n+ 2)

Therefore for a planar graph,

3n− 6 > e

Now, Kuratowski’s first graph is a complete graph with n = 5 vertices

and e =
5(5− 1)

2
= 10 edges.

If the Kuratowski’s first graph K5 were planar then n = 5 and
e = 10 must satisfy above inequality.
But taking n = 5 and e = 10 in the inequality 3n− 6 > e we get,

3(5)− 6 > 10

9 > 10

Which is not possible.
Therefore K5 does not satisfy a necessary condition ( the inequality
) for coplanarity.

Hence, Kuratowski’s first graph K5 is not coplanar.

Also, Kuratowski’s second graph is a regular connected graph
with six vertices and nine edges.

Moreover, no region in this graph can be bounded with fewer
than four edges.

Hence, if this graph were planar, we would have 2e > 4f , and
substituting for f from Euler’s formula f = e− n+ 2, we get,

2e > 4(e− n+ 2)

If the Kuratowski’s second graph K3,3 were planar then n = 6 and
e = 9 must satisfy this inequality. Taking n = 6 and e = 9 in the
inequality we get,

2.9 > 4(9− 6 + 2)

or
18 > 20

, Which is not possible. Hence Kuratowski’s second graph is also
nonplanar.
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4.16. Example. Describe the method of Detection of Planarity of
a graph using elementary reduction.

Solution : To determine planarity of a graph we can
use the following steps known as Elementary Reductions.
STEP:1 A seperable graph is planar if and only if each of its block
is planar. Similarly a disconnected graph is planar if and only if each
of its components is planar. Therefore, first we divide a graph into
non-seperable blocks and obtain the set

G = {G1, G2, . . . , Gk}
where G1, G2, . . . , Gk are nonseparable blocks of G.

STEP:2 Remove all self loops as they do no affect planarity.

STEP:3 Parallel edges also do not affect planarity. There-
fore from each group of parallel edges we remove all edges except any
one in each group.

STEP:4 Elimination of a vertex of degree two by merging
two edges in a series does not affect planarity. Therefore eliminate
all the edges in a series.

Repeated application of steps 3 and 4 reduce a graph to its
most minimised form with same planarity.

If each of the blocks reduces to a planar graph then the graph
G is planar otherwise it is nonplanar.

Using elementary reductions a block is reduced to a single edge in
the figure 10

Figure 10. Detection of Planarity using Elementary Re-
ductions

4.17. Definition. Homeomorphic graphs

Homeomorphic Graphs
Two graphs are said to be Homeomorphic if one graph can be
obtained from the other by creating edges in a series or by merging
edges in series.
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Figure 11. Homeomorphic Graphs

4.18. THEOREM. Prove that a necessary condition for a graph
G to be a planar graph is that G does not contain either of a
Kuratowski’s two graphs or any graph homeomorphic to either of
them.

Proof : Suppose a graph G is a planar graph.
If possible suppose G has a subgraph that is either one of the
Kuratowski’s graphs or it is homeomorphic to one of them.

In any case the subgraph is nonplanar and has no embedding
in a plane. Consequently the graph G also cannot have an embedding
in a plane
This is a contradiction as each planar graph has an embedding in a
plane. Therefore, our suppposition is wrong.

Hence, a planar graph cannot contain either of a Kuratowski’s
two graphs or any graph homeomorphic to either of them.

4.19. Definition. Geometric dual

Let G be graph whose plane reprsentation has k faces F1, F2, . . . , Fk.

Figure 12. Homeomorphic Graphs

A graph obtained as follows is called the geometric dual of G and
usually it is denoted by G∗.
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1. Place k points P1, P2, . . . , Pk, one in each region.

2. If two regions Fi and Fj have a commin edge then draw a
line segment joining the pair of points Pi and Pj that intersects
the common edge. In case there are more than one common edges
between the two regions then draw such line segments joining Pi and
Pj for each of the common edges.

3. For an edge lying entirely in one region draw a selfloop at
the point placed in that region intersecting the edge exactly once.
We note that there is one to one corrspondance between the edges in
G and its geometric dual G∗. Also number of vertices in G∗ is equal
to the number of regions in G.

In the figure 12 the process of obtaining geometric dual of a
graph G is shown.
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4.20. Example. Find geometric dual of the following graph

(1)

Solution :
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(2)

Solution :
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Exercise : 0.1

Find geometric dual of the following graph

(1)

(2)

(3)
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4.21. Example. Give an example to show that dual of dual of a
graph may not be isomorphic to the original graph.

Solution : Let G be a disconnected planar graph as
shown in the figure 13

Figure 13. Isomorphic graphs

Last graph in the figure 13 is the dual of G.

Now, we find G∗∗, the dual of G∗ as shown in the figure 14

Figure 14. Dual of the dual of G

Here the number of vertices in G is 6 and in G∗∗ it is 5. As for
isomorphism between two graphs it is necessary that they have same
number of vertices, the graphs G and G∗∗ are not isomorphic.

4.22. Example. Give an example to show that two isomorphic
graphs may not have isomorphic duals.

Solution : Consider the graphs in the figure 15. The
graphs are isomorphic with each other as there is a one-to-one
correspondance between the vertices of the graphs and one-to-one
correspondance between the edges such that end vertices of the edges
are also in one-to-one correspondance.
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Figure 15. Isomorphic graphs

First, we find the geometric dual G∗1 of G1 (figure 16)

Figure 16. Dual of G1

Next, we find the geometric dual G∗2 of G2 (figure 17)

Figure 17. Dual of G1

In G∗1 there are two vertices of degree 4 whereas there is no vertix
of degree 4 in G∗2.
As it is necessary for two isomorphic graphs to have same number of
vertices with a given degree, the duals of the isomorphic graphs G1
and G2 are not isomorphic.
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4.23. THEOREM. Prove that a neccessary and sufficient con-
dition for two planar graphs G1 and G2 to be dual of each other is
that there is one-one correspondence between the edges in G1 and
edges in G2 such that a set of edges in G1 forms a circuit iff the
corresponding set in G2 forms a cut-set.

Proof : First we show that the condition is neces-
sary.
Let G∗ be a plane representation of a planar graph G. Any circuit τ
in G forms closed simple curve in a plane representation of G that
divides the plane into two areas.
As each region in G corresponds a vertex in G∗, all the vertices of G∗

are partitioned into two non-empty and mutually exclisive subsets,
one inside τ and and other outside τ . Consequently the set of edges
in τ ∗ corrsponding to τ is a cut-set in τ ∗.
Similarly a set of edges S in G that corresponds to a cut-set S∗ in G∗

is a circuit in G.
Now we show sufficiency of the condition.

Suppose G is a planar graph and G′ is a graph for which there
is a one-to-one correspondance between the cut-sets of G and circuits
of G′ and vice versa.There is also one-to-onecorrespondance between
the cutsets of G and circuits of its dual G∗.

Thus, there is exists a one-to-one correspondance between the
circuits of G′ and G∗. Therefore G′ and G∗ are 2-isomorphic.
Hence G′ is a dual of G.

4.24. Example. If G∗ is dual of a graph G then describe a method
of obtaining dual of a subgraph of G from G∗.

Solution : Let a be an edge in a planar graph G and
a∗ be corresponding edge in G∗, the dual of G.

After deletion on a from G let us find the dual of G − a. If
the edge a was a boundary of two regions in G then the two regions
will merge into one in G− a.

Thus, the dual (G − a)∗ can be directly obtained from G − a
by directly deleting a∗ and then merging its end vertices into one.

Now, if a is not on a boundary then a∗ forms a self loop. In
that case G∗ − a∗ is same as (G− a)∗.

With successive application of this procedure we can obtain
dual of a subgraph of G if its dual exists.

4.25. Example. If G∗ is dual of a graph G then describe a method
of obtaining dual of a graph homeomorphic to G from G∗.

Method : Obtaining Dual of a graph Homeomorphic to a graph.
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Figure 18

Let a be an edge in a planar graph G and a∗ be corresponding edge
in G∗, the dual of G.
Now addition of a vertex of degree two inbetween the edge a will
create two edges in series out of a. As a result there will be an edge
added to G∗ parallel to a∗

Figure 19

Similarly, if in G two edges in series are added then one of the
corresponding parallel edges in G∗ will be deleted.

Thus, if a graph G has a dual G∗ then dual of any graph
homeomorphic to G can be ontained directly from G∗ by applying
above process successively.

4.26. THEOREM. Prove that a graph has a dual iff it is planar.

Proof : As every planar graph has a dual, it remains
to prove that if a graph has a dual then it is planar.
This we shall prove this by showing that a nonplanar graph cannot
have a dual.

Let G be a nobplanar graph. Therefore, by Kuratowski’s theo-
rem, the graph contains K5 or K3,3 or has a subgraph homeomorphic
to either of them.
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Now for any graph to have a dual it is necessary that every subgraph
of that graph has a dual. Therefore to show that G does not have a
dual it is sufficient to show that neither of K5 nor K3,3 has a dual.

First we show that neither of K3,3 does not have a dual.
If possible suppose K3,3 has a dual, say D.
Now, every cut-set in a graph corresponds to a circuit in its dual and
vice versa. As K3,3 has no cut-set of two edges there is no circuit
of two edges in D. This implies that D has no parallel edges. As
every circuit in K3,3 is of length 4 or 6, degree of every vertex in D
is atleast 4. Since D has no parallel edges and degree of each of its
vertex is atleast 4 , D must have atleast 5 vertices such that degree
of each vertex is atleast 4. But then the number of edges in D must

be
4× 5

2
= 10

This is a contradiction as K3,3 has only 9 edges. Hence K3,3 does not
have a dual.

Finally we show that K5 also does not have a dual.
If possible, suppose K5 has a dual, say H.
We know that K5 has
(1) 10 edges
(2) no pair of parallel edges
(3) no cut-set with 2 edges, and
(4) every cut-set has four or six edges.

Consequently, the dual H must have
(1) 10 edges
(2) no vertex with degree less than 3
(3) no pair of parallel edges and
(4) every circuit has length 4 and 6 only

Now, H contains a hexagon ( a circuit with 6 edges ) and not
more than 3 edges can be added to a hexagon without creating a
circuit of length 3 or a pair of parallel edges.
As H has neither a pair of parllel edges nor a circuit of length less
than 4, the only possibility is that H has atleast 7 vertices. Moreover
degree of each vertex must be 3. Therefore, H must have atleast 11
edges. This is a contradiction as H must have 10 edges only. Hence
K5 has no dual.
Thus, a nonplanar graph does not have a dual.

Hence, the theorem.


